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Abstract (English)

In recent years, much research has been done to find new authentication methods that try to avoid
explicit input from a user. This techniques use patterns and biometrics from a user to recognize
machine learning models. One of these biometrics is the way a person walks. It can be captured
by sensors on a smartwatch or smartphone, easily and unobtrusively.

The aim of this thesis is to develop a method that is based on an existing barebone implementation.
This application consists of a wearable application to record data and a server application to
process this data offline. With a study of state-of-the-art recognition of human activity and gait
recognition, this implementation was studied, expanded and improved.

In this project, a human activity recognition system was placed in cascade with a gait recognition
system to design a continuous gait-based authentication model. These systems are traditional
machine learning models and use a new feature-extraction technique that is fast and accurate. The
new implementation allows data to be captured, offline to be trained offline on the server and for
new data to be evaluated on the wearable. We have explored deep learning, but the traditional
approach with manually designed functions performs better.
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Abstract (Nederlands)

In de voorbije jaren is er veel onderzoek gebeurd naar nieuwe authenticatie methoden die expliciete
input van een gebruiker proberen te vermijden. Deze methoden gebruiken patronen en biometrie
van een gebruiker om met machine learning modellen deze te herkennen. Een van deze biometrische
eigenschappen is de manier waarop een persoon wandelt. Deze kan met wearable sensors op een
smartphone of smartwatch, gemakkelijk en wrijvingsloos worden opgenomen.

Het doel van deze thesis is om een continue authenticatie methode op basis van gait te ontwikkelen
die beter presteerd dan een reeds bestaande barebone implementatie. Deze implementatie bestaat
uit een wearable applicatie om data op te nemen en een server applicatie om deze data offline te
verwerken. Met een studie van state-of-the-art human activity recognition en gait recognition werd
deze implementatie bestudeerd, uitgebreid en verbeterd.

In dit project werd een human activity recognition systeem in cascade met een gait recognition
systeem geplaatst om een continu gait-gebaseerd authenticatie model te ontwerpen. Deze beide
systemen gebruiken traditionele machine learning modellen en maken gebruik van een nieuwe
feature-extraction techniek die snel en accuraat is. De nieuwe implementatie laat toe om data op
te nemen, offline te trainen op de server en nadien voor nieuwe data op de wearable te evalueren.
Bovendien werd onderzoek gedaan om dit probleem met deep learning aan te pakken, maar de
traditionele aanpak met manueel ontworpen features presteert beter.

ix





Nederlandse samenvatting

In de voorbije jaren is er veel onderzoek gebeurd naar nieuwe authenticatie methoden die expliciete
input van een gebruiker proberen te vermijden. Deze methoden gebruiken patronen en biometrie
van een gebruiker om met machine learning modellen deze te herkennen. Een van deze biometrische
eigenschappen is de manier waarop een persoon wandelt. Deze kan met wearable sensoren op
een smartphone of smartwatch, gemakkelijk en wrijvingsloos worden opgenomen.

Doel

Het doel van deze thesis is om een continue authenticatie methode op basis van gait te ontwikkelen
die beter presteerd dan een reeds bestaande barebone implementatie. Deze implementatie bestaat
uit een wearable applicatie om data op te nemen en een server applicatie om deze data offline te
verwerken. Met een studie van state-of-the-art human activity recognition en gait recognition werd
deze implementatie bestudeerd, uitgebreid en verbeterd.

State-of-the-art

Een eerste stap is te detecteren wanneer een persoon wandelt. Dit is een probleem uit Human
Activity Recognition (HAR). Uit de literatuur leren we dat specifieke bewegingen van het lichaam
transleren naar karasteristieke patronen in de sensor data. Met de juiste gekozen technieken
kunnen we deze patronen extraheren uit de data en met behulp van machine learning een classifier
trainen. Een volgende en moeilijkere stap is om eenmaal wanneer we zeker zijn dat een persoon
wandelt beslissen over welke persoon het gaat. Deze kan idem met machine learning worden
opgelost.

Experimenten

Om deze systemen te evalueren is er een dataset van 5 vrijwilligers opgenomen die wandelen
en andere activiteiten uitoefenen. In dit project werd een human activity recognition systeem in
cascade met een gait recognition systeem geplaatst (zie figuur 1) om een continu gait-gebaseerd
authenticatie model te ontwerpen. Deze beide systemen gebruiken traditionele logistic regression
machine learning modellen. Een eerste manier om beide systemen te verbeteren is om een nieuwe
feature extractie techniek te bouwen. Deze feature is gebaseerd op de derivative filter uit het veld
van de computer visie. Na experimenten waarbij verschillende versies van deze feature werden
uitgeprobeerd werd een beste techniek geselecteerd. Een volgende verbeteringstechniek is om de
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Figure 1: Overzicht van gait detection (wandel detectie) model en gait recognition (authenticatie model)

preprocessing aan te passen. Na implementatie van een Gaussiaanse filter presteren te modellen
beter. Bovendien werd onderzoek gedaan om dit probleem met deep learning aan te pakken, maar
de traditionele aanpak met manueel ontworpen features presteert beter.

Deze twee systemen worden vervolgens getest op gepaste publieke datasets. We testen de
gait recognition methode op IDNet [1]. De gait detection worden getest op de USC-HAD [2] en
PAMAP2 [3] datasets.

Resultaten

De nieuwe implementatie laat toe om data op te nemen, offline te trainen op de server en nadien
nieuwe data op de wearable te evalueren. Deze twee modellen maken gebruik van deze nieuwe
feature-extraction techniek die snel en accuraat is. Er kan verder onderzocht worden om het
geheugen- en CPU-gebruik te verminderen. Ook kan de toevoeging van nieuwe gebruikers worden
vergemakkelijkt door een betere manier te ontwikkelen om data van de wearable naar de server te
verplaatsen.
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Chapter 1

Introduction

This master degree project was proposed within a research project called SenseID conducted by
the company Vasco Data Security in collaboration with the university KULeuven. The company
project aims to research new methods to further improve user authentication based on capturing
contextual data and biometrics. The goal of this project is to develop a gait authentication algorithm
that can be used on computationally limited devices such as smart phones and smart watches.

1.1 Background and purpose

Over the last decade there has been an increase in the amount of mobile devices such as mobile
phones, tablets etc. They are no longer only used for calling or sending text messages. These
devices are used in mobile applications such as web browsing, emailing, e-banking and e-commerce.
As a result, they contain personal valuable information. Thus, there is a need for security.

Common methods to provide security to these devices are the use of a Personal Identication
Number (PIN) code or the use of a fingerprint scanner. These however, require explicit user
interaction from the user. According to a survey [15] users choose to disable the PIN method.
The most common reason to turn off this authentication method is that entering a PIN takes too
much time. Furthermore the authentication only applies to the start of a transaction. The user will
not be authenticated before, throughout and after the duration of a transaction.

The SenseID project searches to provide answers to these two problems. The goal of the SenseID
project is to research new ways to uniquely, reliably, and continuously identify people. Wearable
devices can be used to record biometric data and other contextual data. Such data can be used to
continuously and transparently authenticate users in an unobtrusive manner.

1.2 Goal

One of these biometrics that can be easily collected is the gait of a person. In this project, we
define gait as the manner in which a person walks. We can use the accelerometer and gyroscope
sensors to collect and develop an unobtrusive gait recognition method. In previous work, this has
been done before with some promising results. In this thesis project we take a look at existing
methods and attempt to improve the state-of-the-art algorithms to provide a more computationally
efficient and accurate method for gait authentication for computationally limited devices.

3



4 1 Introduction

Figure 1.1: Person walking with SenseID wearable

In this thesis we will discuss the state-of-art and go over some of the basic concepts in chapter 2.
Followed by the achieved successes in 3

1.3 Research questions

The one research question that encapsulates this work is

Can we develop a computationally inexpensive and accurate gait-based continuous authentication
model for mobile devices?

One of the approaches of this project is to use traditional machine learning, in which we hand-craft
a feature extraction technique. A follow-up on the previous approach is to further improve the
learning and classification process with deep learning.

More specific research questions can be proposed:

1. Can we develop a feature extraction technique that is both computationally inexpensive and
accurate to authenticate a person based on his walking pattern?

2. Can we improve the accuracy of models based on existing hand-crafted feature extraction
techniques for gait recognition by crafting a suitable deep learning network architecture?

3. How much walking data is needed to enroll a new user in an authentication model?



Chapter 2

Literature Study

In this chapter we give a brief overview of some of the basic concepts regarding security and
authentication. We will then further discuss biometrics authentication based on gait. We will
then give a study of the state-of-the-art techniques regarding gait authentication using traditional
machine learning, followed by a study of methods using deep learning.

2.1 Introduction to Security and Authentication

A computer system compromised of hardware, software, and processes is often an abstraction of
an actual business model that exists in the real world outside the computer system [16]. Every
element of a transaction has to be projected onto a computer model. Actual users are humans,
which exist outside the system. A user ID can be used as an abstract object the projection of a
human into the computer system. This object is referred to by the system when user access to
information assets is defined, and the system will also trace user actions and record an audit trail
referring to the actual user by his abstract object ID.

In a security system there are three main security processes [16](Authentication, Authorization and
Identification) working together to provide access to resources in a controlled manner. Authentication
is the process of validating user identity. Authorization means providing users with the access to
resources that they are allowed to have and preventing users from accessing resources that they
are not allowed to access. Accounting providing an audit trail of user actions. This is sometimes
referred to as auditing.

In this thesis we’ll focus on the process of authentication. In this process we want to validate the
user identify to the security system. A user may claim to be a represented object in the computer
system. It is up to the the authentication process to ascertain the claimed user identity by verifying
user-provided evidence. This evidence is based on characteristics or unique information. Below
are listed three types of credentials, sometimes known as ’the three factors of authentication’. [16]

1. Something you know: Based on a secret shared between the user and the authenticator.

2. Something you are: Requires the authenticator to authenticate the user based on biometric
information, such as fingerprints, retina scan, facial scan, etc.

3. Something you have: Requires the possession of an authentication token, which is an actual
object.

5



6 2 Literature Study

The use of multiple authentication factors considerably increases the security of a system from a
user authentication perspective. If one authentication credential might fail, then a second one is
taken into consideration. Using multiple types of credentials will likely increase the time it takes for
users to log in.

2.2 Biometric recognition

One of the credential types as part of the ’three factors of authentication’ is biometric information.
According to [4] any human physiological and/or behavioral characteristic can be used as an
authentication factor when it satisfies the following requirements:

• Universality: each person should have the characteristic.

• Distinciveness: any two persons should be sufficiently different in terms of the characteristic.

• Permancence: the characteristic should be sufficiently invariant (with respect to the matching
criterion) over a period of time.

• Collectability: the characteristic can be measured quantitatively.

However, in a practical biometric system there are a number of issues that must be considered [4]:

• Performance: which refers to the achievable recognition accuracy and speed, the resources
required to achieve the desired recognition accuracy and speed, as well as the operational
and environmental factors that affect the accuracy and speed;

• Acceptability: acceptability, which indicates the extent to which people are willing to accept
the use of a particular biometric identifier (characteristic) in their daily lives.

• Permanence: the characteristic should be sufficiently invariant over a period of time.

• Circumvention: which reflects how easily the system can be fooled using fraudulent methods.

A practical biometric system should meet the specified recognition accuracy, speed, and resource
requirements, be harmless to the users, be accepted by the intended population, and be sufficiently
robust to various fraudulent methods and attacks to the system. One of the types of biometrics
which satisfies the above conditions is the gait, which we’ll discuss in section 2.3.

In general a biometric system is a pattern recognition system that works by collecting biometric data
from an individual, extracting a feature set, and comparing this feature against a template set in a
database. Depending on the application, a system may operate in two modes, either in verification
or identification mode: [4]

1. Verification mode: The system validates a person’s claimed identify by comparing the collected
biometric data against the person’s biometric template stored in the systems database. The
system conducts a one-to-one comparison to determine whether the claim is true or not.

2. Identification mode: The system recognizes an individual by comparing the collected biometric
data against all of the users in the database. In this mode a system conducts a one-to-many
comparison.
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Figure 2.1: Block diagram of enrollment, verification and identification [4]
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Figure 2.2: False Matching Rate (FMR) and False Non-Matching Rate (FNMR) (left) for a given treshold t.
The ROC curve relating FMR to FNMR (right) at different thresholds. [4]

A general overview of the workings of a biometric system is given in figure 2.1. A biometric system
can make two types of errors [4]:

1. mistaking biometrics from two different users to be the same is called a false match

2. mistaking two biometric from the same person to be from two different persons is called a
false nonmatch.

FMR =
number of nonmate pairs whose matching score exceeds the threshold

all nonmate pairs
(2.1)

FNMR =
number of mate pairs whose matching scores are less than the threshold

all mate pairs
(2.2)

In figure 2.2 can be seen how a threshold t can have an impact on the amount of FMR and FNMR.
The value of which threshold t to pick is application dependent. In applications such as criminal
identification, FNMR is much more important than FMR. It is preferable to falsely identify people
than to not miss identifying a criminal. Whereas for highly security applications FMR is critical.

2.3 Gait

We can go over some of the terminology used in gait analysis. Gait and walking are often used
interchangeably, however there is a slight difference. We can define walking as ’a method of
locomotion involving the use of the two legs, alternately to provide both support and propulsion
with at least one foot being in contact with the ground at all times.’ [17] Gait is defined as the
manner in which a person walks. Gait speaks more about the style of walking, rather than the
process itself.
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Figure 2.3: Events in a gait cycle [5]

Figure 2.3 shows an illustration of gait cycle. We will not go in depth about each of these events.
Gait is a behavioral biometric and can be variant over time, due to several factors [18] like e.g.
walking in a straight line, walking down- or uphill, fast or slow,... The same study shows that gait
changes over a longer period of time i.e. greater than 2 months.

When we compare gait against other types of biometric data, gait is less distinctive, but it is
sufficiently discriminatory to allow verification [4]. The main advantage of preferring gait is that
it can provide an unobtrusive authentication method compared to other biometric systems like
fingerprint or face recognition which require explicit user interaction. [19]

2.4 Traditional Machine Learning (ML)

In this section we cover general machine learning concepts. The literature about this topic is quite
large so we only discuss a small part of this discipline. Figure 2.4 gives an overview of AI, Machine
learning and deep learning.

In short, machine learning is a subfield of artificial intelligence (AI) which allows computers to
learn. [20] Usually a machine learning algorithm is given a set of data and information about
properties of the data. In this manner a computer can make predictions about unseen data in
the future. This is possible because all non-random data contains patterns that allow machines to
generalize. In order to do this, it trains a model with what it determines are the important aspects
of the data. One of the weaknesses is that when an algorithm encounters a pattern previously
unseen, it is likely to be misinterpreted [20]. There are many different machine learning algorithms,
with their own strengths and suited to different types of problems. In 2.4.1 and 2.4.2 we discuss
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Figure 2.4: A Venn diagram showing how deep learning is a kind of representation learning, which is in turn
a kind of machine learning, which is used for many but not all approaches to AI. [6]
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Figure 2.5: Machine learning components overview

two common supervised learning algorithms.

Figure 2.5 shows a general view of components used in supervised learning. Two phases be
distinguished:

• Training phase: choosing model parameters based on labelled training data

• Inference phase: making some sort of prediction on new unseen data

After we have selected a model that has been fitted on the training dataset. We can use a test
dataset of unseen data to estimate how well the model performs. If we are satisfied with its
performance, we can now use this model to predict new future data.

2.4.1 Support Vector Machine (SVM)

A SVM model is based on the concept of decision planes that define decision boundaries which
are planes that separate a set of data in different classes. A SVM model constructs hyperplanes in
a multidimensional space that separates data in different classes.

A paper [7] shows how SVM work using an intuitive geometric. The figure 2.6 shows two linearly
separable classes and a decision plane.

One way to construct the plane (see figure 2.7) as far as possible from both sets is to construct the
smallest convex sets that contain all the data in each class (i.e. the convex hull) and find the closest
points in those sets. [7] Then, construct the line segment between the two points. The plane γ,
orthogonal to the line segment w, that bisects the line segment is chosen to be the separating
plane. [7]

2.4.2 Logistic Regression (LR)

A LR model is known as a binary classifier and is part of supervised learning. It uses the sigmoid
function shown in equation 2.4. A LR model uses one or more independent variables X = [X1,X2, . . . ,Xk]

T
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Figure 2.6: Two separable sets and two of the infinitely many possible planes that separate the sets [7]

Figure 2.7: The two closest points of the convex hulls determine the separating plan [7]
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and regression coefficients β = [β0,β1, . . . ,βk]
T to predict the probability of a binary outcome.

A logistic function is

p(θ) =
L

1+ e−m(x−x0)
(2.3)

where L is the curve’s maximum value, m steepness of the curve, x0 x-value of the function’s
midpoint. A standard logistic function with k = 1, x0 = 0, L = 1 is called the sigmoid function and
can be written as

p(θ) =
1

1+ e−x (2.4)

Using equation 2.4 we can predict our probability as

p(θ) =
1

1+ e−(β0+β1X1+...+βkXk)
(2.5)

One requirement to use a LR is that the training data has to be linearly separable. Which means that
for k-dimensional training data we must be able to define a k−1-dimensional decision boundary to
separate the data into two separate classes.

2.5 Deep Learning (DL)

Deep learning is part of machine learning. Since 2010s three reasons can be given why deep
learning has become successful:

• more computation power, due to Moore’s law

• more training data available

• novel and better algorithms

The main strength of neural networks is that they can handle complex nonlinear functions and
discover dependencies between different inputs. The major downside of neural networks is that
they require very large datasets to recognize objects in a realistic setting. [20] Neural networks also
are a black box method. A network might have hundreds of nodes and thousands of synapses,
making it impossible to determine how the network came up with the answer that it did. Another
downside is that there are no definitive rules for choosing some of the training parameters and
network size for a particular problem. These decisions usually require a good amount of experimentation.
Choosing the wrong parameters can cause the network to overgeneralize on noisy data, or otherwise
it might never learn, given the training data you have. [20].

Another advantage of neural networks is compared to traditional machine learning methods used in
computer vision, the state-of-the-art approach since 2012 was to use hand-crafted features. Neural
networks allow us to no longer manually engineer these features, but let the neural network learn
which traits are important of the given training data. [20]
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Figure 2.8: Feed-forward neural network with multiple layers [8]

2.5.1 Architecture

Neural networks (NNs) were inspired by the workings of the human brain. A standard NN consists
of many simple, connected processors called neurons, each producing a sequence of activations.
Input neurons get activated through sensors perceiving the environment, other neurons get activated
through weighted connections from previous active neurons [21].

Figure 2.8 shows a feed-forward neural network

We can write the output of one layer ai
j as follows

ai
j = σ(∑

k
wi

jk ·ai−1 +bi
j) (2.6)

where:

• σ is an activation function

• wi
jk is the weight from the kth neuron in the (i−1)th layer

• bi
j is the bias of the jth neuron in the ith layer

• ai
j represents the activation value of the jth neuron in the ith layer

There are two common neural network architectures: the convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). CNNs are used to recognize visual patterns directly from
pixel images with variability.RNNs are designed to recognize patterns in time series composed by
symbols, audio or speech waveforms [10].
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Figure 2.9: LeNet-5 network architecture [9]

2.5.2 Stochastic gradient descent (SGD)

A typical way to minimize a cost function in a NN is using a stochastic gradient descent (SGD). The
following equation represents one simultaneous update to the weights θ of a NN:

θ
k = θ

k− ε
∂

∂θk J(θ) (2.7)

where θ is the parameters or weights and ε is the learning rate, the partial derivative ∂

∂θk J(θ)
measures the rate of increase with respect to the changes in different dimension θk. This partial
derivative vector is called the gradient.

2.5.3 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are a specialized kind of NNs for processing data that has
a known grid-like topology [6]. Examples include time-series data, which can be seen as a 1
dimensional grid taking samples at discrete time intervals, and image data, which can be seen
as a 2 dimensional grid of pixels. CNNs have been proven immensely successful in practical
applications. CNNs are named after a linear operation that is essential to the network. CNNs were
loosely inspired by how the brain processes visual information. The first CNN was proposed in
Fukishima’s Neocognitron [22]. CNNs were later improved by Yann LeCun [9] in which he applied
gradient-based stochastic gradients to very successfully recognize handwritten digits. Historically,
a major drawback in 1990s and 200s has been the required computational power to apply CNN to
large scale high resolution images.

The figure 2.9 shows LeNet-5 [9], which is applied to document recognition. A typical convolutional
neural network consists of several non-linear layers. The input is an image and the output is a
vector. The output vector contains the probability of the image belonging to each class. This
network has four different types of layers which are named as: convolution, downsampling, full
connection, and Gaussian connection. Since the introduction of AlexNet [6] in 2012, networks have
more layers and use dropout to reduce overfitting.

2.5.4 Long short term memory (LSTM)

LSTMs are a kind of Recurrent neural networks (RNNs) capable of learning long-term dependencies.
The unique about RNNs is that they introduce a memory cell into the architecture of a NN. This
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Figure 2.10: Three nonlinear activation functions used by NNs: the sigmoid function, the rectified linear unit
(ReLu) and the Leaky ReLu) [10]

allows a RNN compared to a traditional feed-forward neural network to retain a state that can
represent information from a longer time window.

LSTMs were first introduced by Hochreiter and Schmidhuber[23], and were further improved to
work immensely well on a large variety of problems.

2.5.5 Overfitting and underfitting

Overfitting occurs when the machine learning model is too complex for the data set, which means
that the number of its parameters is too high relative to the number of observations. When a very
complex model is overfitting, it achieves high performances on unseen data by memorizing the
training data which it was trained on. As a consequence, it is not able to generalize the learned
patterns in the data to correctly predict new data. In contrast, underfitting happens when a model
is too simple. When a model is too simple, it will not be able capture the underlying structure of the
training data and will achieve little performance on new data.

2.5.6 Activation functions

In NNs it is convention to apply a non-linear operation or also known as an activation layer after
a convolution layer. In figure 2.10 are three types of activation functions shown. In recent years,
researchers have discovered that using the ReLu works better than previously used tanh or sigmoid
functions by improving computational efficiency without losing significant accuracy [24].

2.5.7 Pooling layers

Pooling or known as subsampling services to reduce the spatial dimensions drastically. This can
be done because the exact location of a specific feature is not as important as its relative location
to other features.

2.5.8 Dropout layers

One of the problems of NNs is overfitting as discussed in 2.5.5. A simple method proposed in [25]
is to drop out a random set of units along with their connections from the NNs. This significantly
improves the performance of NNs.



2 Literature Study 17

Figure 2.11: Diagram of a CNN. [11]

2.5.9 Fully connected layer

A fully connected layer takes the output of the previous layer and computes which of the activations
correspond to a specific class.

2.5.10 Transfer learning

As NNs evolved to contain more layers, they require more training data. Unfortunately for some
applications it is unfeasible to collect the necessary amount of data. The idea behind transfer
learning is to take a pre-trained model with weights and parameters of a NN that has been trained
on a large data set by somebody else, and tuning the model with data specific for that application.

We can freeze the weights of all the other layers except the last layer, as a consequence we can
use the pre-trained model as a feature extractor [11]. Figure 2.11 shows the disctinstion of the
feature extraction and classification module.

2.6 State-of-the-art Gait Authentication

There are three different approaches in state-of-the-art gait recognition: Machine Vision Based
(MVB), Floor Sensor Based (FSB) and Wearable Sensor Based (WSB). There are many studies
that demonstrate successfully analyzing the human gait. The different approaches are briefly
explained below.

Most of the research based on gait recognition has been using a Machine Vision Based. A
MVB system uses gait data recorded from analog and digital cameras. They use machine vision
techniques like threshold filtering which converts an image into black and white, pixel count to
calculate the number of light or dark pixels, or background segmentation which removes the background
of an image to detect gait features.

A different approach is Floor Sensor Based. In this approach sensors are integrated into the floor or
are installed in a floor mat. In addition, typically FSB are not used as a standalone system, mainly
they are used in combination with other systems as part of a multimodal biometric system.

The most recent approach of these is the Wearable Sensor Based approach. The WSB uses
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Figure 2.12: Comparison between wearable sensors (WS) and non-wearable sensors (NWS) systems. [12]

motion recording sensors placed on different places on the body such as the hips, wrists or waist
to measure characteristics of a person’s gait. The most common sensors used are accelerometers
and gyroscopes.

An article [12] from 2014 presents a comparison of the above described methods. Figure 2.12
shows a comparison between wearable sensors (WS) and non-wearable sensors (NWS) systems.
MVB and FSB systems allow characteristics of the human to be captured much more in-depth.
However, these methods require a controlled laboratory environment. Recent developments in WS
allow more cost-effective methods in realistic conditions.

A review paper [13] from 2015 compares state-of-the-art using the WSB approach at the time. The
basic overview of existing inertial sensor-based gait recognition approaches is shown in figure 2.13.
We will discuss more in depth in 2.6.1 In general, all approaches operate according to the following
principle:

1. based on the appropriate sensor set-up, inertial data is acquired during a user’s walk

2. pre-processing and segmentation step, acquired inertial data is transformed to gait patterns

3. incoming gait patterns are compared with enrolled patterns by appropriate recognition procedure

2.6.1 Wearable Sensor Based approach

In a first step we take a look at the raw data which are collected from inertia based sensors such
as an accelerometer and in other works both the accelerometer and gyroscope are used. At first,
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Figure 2.13: Methodological layout of existing Wearable Sensor Based approaches. [13]
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Figure 2.14: Neural network for gait recognition using Wearable Sensor Based approach. [14]

WSB works used specialized sensors, but it has been proven that commercially available sensors
such as those that can be found in smartphones and smartwatches can also be effective.

Raw sensor data usually isn’t captured on an invariant sample period, thus a first step is to
interpolate the raw sensor data. This data is commonly unfit to be used in a learning algorithm
directly, so a processing step is needed to transform raw noisy data into useful input data. Filtering
can be used to remove sensor-induced gait-affecting factors [13]. High pass filters such as a moving
average filter or a Gaussian filter are suitable for this task.

Next we divide gait signal into smaller parts. We defined in 2.3 a gait cycle which can be used as a
segmentation method [5, 19, 26]. Other methods divide the data into fixed length segments which
should contain at least one gait cycles. In recent works this fixed length method has been found to
be more accurate than the more complex cycle detection method [13].

A next step is to transform the data into a feature space to be used by a machine learning classification
method. This step is known as a hand-crafted feature extraction method. Finally a supervised
traditional machine learning classifier can be constructed. A commonly used ML method is a SVM.

A newer and less common approach is to use DL. This method allows a DL architecture to learn
a suitable feature-extraction technique. When used with an appropriate amount of training data,
much time can be saved by no longer having to invest time in hand-crafting a feature extraction
technique. A recent work [14] uses multiple sensors placed on the body (right wrist, left thigh,
left upper arm,...) to extract gait cycles and concatenate them as input data in a CNN. They use
data from the ZJU-GaitAcc dataset [27] which is a publicly available dataset of 175 users. The
architecture of this network can be seen in figure 2.14. Although there are plenty of participants the
walking distance is limited to 20m. In section 2.9 we compare datasets that can be used for gait
recognition.

2.7 State-of-the-art Activity Recognition

Figure 2.15 shows the x-axis of an accelerometer and the performed activities of a subject during
60 seconds. The authentication system can only be used when the subject is walking. Therefore, if
we want to use a gait-based authentication system continuously, we have to know when a subject
is walking. Activity recognition or Human Activity Recognition (HAR) can help us detect when
a person is walking or not. It is based on the fact that specific body movements translate into
characteristic sensor signal patterns. The difficulty of state-of-the-art HAR activities can range from
simple activities such as standing up to more complex activities such as ironing. In this project we
are only interested in detection of locomotion activities i.e. walking and non-walking. We can use
traditional machine learning to train a classifier on hand-crafted features extracted from our sensor
data. Alternatively we can use deep learning to avoid the time-consuming process of manually
crafting a feature.
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Figure 2.15: An example of activity data from the x-axis of the 3-axis accelerometer [2]
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Table 2.1: z-score for different confidence level

Desired confidence level z-score
99% 2.58
95% 1.96
90% 1.65

2.8 Statistically Significant Validation Population Size

The current validation result is limited to a very specific and a small group of people i.e. 5 technical
people from Vasco Data Security in Wemmel. Therefore, we are not sure about the result whether
it remains valid if it is extrapolated to a larger group of people. To have more confidence on the
validation result, the validation needs to be performed on a larger group of people. It is neither
practical nor feasible to study the whole population in any study [28]. Hence, a set of participants
is selected from the population, which is less in number, but adequately represents the population
from which it is drawn, so that true inferences about the population can be made from the results
obtained. In statistics, there exists a way to calculate a sample size from a margin of error and a
confidence level. The formula that is widely used for a finite population size is [28]:

samplesize =

z2 p(1− p)
e2

1+
z2 p(1− p)

e2N

(2.8)

where N is population size, e is margin of error and z is z-score for desired confidence interval. The
z-score is the number of standard deviations a given proportion is away from the mean. To find the
right z-score to use, refer to the table 2.1:

The definition of various terminologies are explained as follows:

Population size (N) The total number of people in the group we are trying to study. It is speculated
that there will be 2.5 billion people by 2019 using the smartphone, assuming that the smartphone
will be used to access many resources. Therefore, this value is used to calculate the sample
size. N = 2,500,000,000. Since the population size is large, it has small influence on the
sample size.

Confidence level (p) The confidence level tells how sure we can be about the result. The most
common confidence intervals are 90%, 95%, and 99%. Most researchers use the 95%
confidence level. For example, what a 95 percent confidence level is saying is that if the
study/experiment were repeated over and over again, the results would match the results
from the actual population 95 percent of the time.

Margin of error (e) The margin of error is the range of values below and above the sample statistic
in a confidence level. The smaller the margin of error, the closer we are to having the
exact answer at a given confidence level. For example, a 95% confidence interval with a
3 percent margin of error means that the statistic will be within 3 percentage points of the
real population value 95% of the time.

Table 2.2 gives the sample size for different confidence level and margin of error. Most of the
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Table 2.2: sample size for different confidence level and margin of error for p=0.5

99% 95% 90%
1% 16,641 9,504 6,724
3% 1,849 1,068 748
5% 666 385 269

Table 2.3: sample size for different confidence level and margin of error for p=0.95

99% 95% 90%
1% 3,161 1,824 1,293
3% 351 202 143
5% 126 72 51

research uses the value of 95% confidence level and margin of error of 5% and the value indicated
in bold in the table can be used as the sample size for validation.

The value p has influence on the sample size. Since in our experiment the participant do not really
have to answer any question, they only needs to be in their routine life and not be traveling on
holidays. We can assume that the most of the participants are in their routine level. Hence, we can
use a higher value of p=0.95. Table 2.3 gives the sample size for the different confidence level and
margin of error.

2.9 Datasets

To evaluate our models to solve our two problems discussed in 2.6 and 2.7, we are in need of
datasets. We can record our own and/or use a publicly available dataset. In table 2.4 are listed
some of the requirements. First, we need the data to be recorded with commercially or equivalent
quality wearable sensors. Ideally we’d like the sensors to be positioned on the wrist, alternatively
data recorded from a front pocket or lower hip will suffice. Using data from both accelerometer and
gyroscope data is preferred and a sufficient amount of data for each user is required. For walk
detection we are looking for a minimum of 5 users and the most common locomotion activities.
Whereas for authentication we are aiming for 51 users (see 2.8).

In table 2.5 we show a comparison of publicly available datasets that can be used to evaluate
methods to solve our gait detection and gait recognition. To evaluate our gait detection methods
we can use the IDNet [1] dataset. For gait detection we can best evaluate on PAMAP2 [3] and the

Table 2.4: Requirements of datasets for gait detection and gait recognition

Gait detection Gait recognition
Size >=5 >=50
Sensors accelerometer and/or gyroscope
Hardware smartwatch, smartphone
Position wrist, front pocket, hip
Duration 1 minute per activity 5 minutes
Activity sitting, lying, standing, walking walking
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Table 2.5: Comparison of publicly available datasets

Dataset IDNet [1] Z-JU [29] PAMAP2 [3] G. Wu [30] USC-HAD [2]
Sensors both only accelerometer both both both
Position front pocket wrist+others wrist+others fingertip hip
Duration >5 minutes 1 minute 5 minutes >5 minutes >5 minutes
Activity walking walking multiple multiple multiple
Conditions some outside inside some outside inside inside
Subjects 50 175 9 40 14

USC-HAD [2] dataset.

2.10 Conclusion

In the literature study we discussed approaches to build a continuous gait-based authentication
system with wearable sensors. We need to solve two problems, gait detection and gait recognition.
For gait detection we looked at Human Recognition and for gait recognition we looked at gait
recognition problems. For both problems, techniques from traditional machine learning and alternatively
deep learning can be used. A dataset for both problems can be recorded or we can use one of the
publicly available ones discussed in 2.9.



Chapter 3

Approaches to improvement

In chapter 2 we discussed a general approach to build a continuous gait-based authentication
system with wearable sensors. The following sections describe the goal of the project, the implementation
of a gait-based authentication model at the start of the project and the approach towards an
improved implementation.

3.1 Goal

More specifically than described in 1.2 the main goal is to improve an existing barebone implementation
which we will describe in 3.2). We wish to research a computationally efficient and accurate method
for gait authentication system that can be implemented on an Android based wearable.

3.2 Beginning

The dataset at the beginning of the project consisted of only a few participants. This data was
collected from a variety of Android-based smart watches using the above mentioned application.
Unfortunately, this dataset was inadequate and first we obtained a new dataset of which the process
is described in section 3.3.

Our initial implementation exists of two applications, one application on an Android wearable and a
second application written in Python which runs in a desktop environment.

Initially the functionality of this application on an Android wearable device is limited to only allow the
recording of gait data. A user can input their username and press a button to start/stop recording.
The User Interface (UI) can be seen in 3.1.

The desktop application was written in Python and consists of a walk detection model in cascade
with a binary authentication model. A visual overview is given in figure 3.2. To authenticate a
user based on his walking pattern, we have to be certain that the user is walking. We train a walk
detection model to differentiate between walking data and other activities. These two subsystems,
gait detection and gait recognition are each described in the following subsections 3.2.3 and 3.2.4.
Both systems use similar preprocessing and feature extraction techniques, so we will begin by
describing these in 3.2.1 and 3.2.2.

25
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Figure 3.1: Initial Android User Interface (UI)

Figure 3.2: Overview of walk detection model and the authentication model
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3.2.1 Preprocessing

We linearly interpolate raw data collected from an accelerometer and a gyroscope with a sampling
rate of 50Hz to a rate of 100Hz. This ensures that there will be enough data points for our
feature extraction technique to work properly. We divide data into segments with length of 10
seconds. Next, we apply a wide box filter of size 20 to reduce some of the noise and improve our
signal-to-noise ratio.

3.2.2 Feature Extraction Method

We applied some of the state-of-the-art features such as a feature based on Fast Fourier transform
(FFT) and a feature based on Euclidian Distances (ED). Both feature extraction methods are
described in pseudo-code in algorithm 1 and algorithm 2, respectively.

Algorithm 1 Euclidian Distances (ED) feature computation

1: Initialize multiple (N) gait_windows (gw)
2: for i ∈ {0, . . . ,N} do
3: for j ∈ {i+1, . . . ,N} do
4: xscores← XCORR(gw[i],gw[ j]) . xcorr computes max(sqrt(x[i]-y[i])2) for each value i

for each channel of the accelerometer and gyroscope
5: end for
6: end for . xscores contains the concatenated feature

Algorithm 2 Fast Fourier transform (FFT) feature computation

1: Initialize a window_duration with a duration of 10 seconds and template_duration with a
duration of 1 second.

2: function SCORES(signal, template)
3: for i ∈ {1, . . . ,9} do
4: fft_scores← EUCLIDEAN_DISTANCES(signal[i : i+10], template);
5: end for
6: return fft_scores
7: end function
8: template← signal[: template_duration] . Select first second of signal as template
9: for each signal channel data signal do

10: scores← SCORES(signal, template)
11: fft_coef ← FFT(scores,sample_ f req, fft_n = 1024)
12: end for . fft_coef contains the concatenated feature

3.2.3 Initial gait detection

The initial gait detection model uses the preprocessing method described in subsection 3.2.1 and
the Fast Fourier transform (FFT) feature extraction method described in subsection 3.2.2. The initial
gait detection model is a logistic regression model.
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3.2.4 Initial gait recognition

The initial gait recognition model uses the preprocessing method described in subsection 3.2.1 and
the Euclidian Distances (ED) feature extraction method described in subsection 3.2.2. The initial
model uses a Support Vector Machine (SVM).

3.3 Data collection

We possess a dataset of walking data from 5 participants and data from other activities. Data was
collected using commercial grade sensors from a single smart watch. They were asked to walk
outside for a duration of 10 minutes and repeat this over a period 5 days. The participants were
trusted volunteers and were not supervised during their activities. This dataset contain the following
activities:

• Lift: stand in the lift while it moves up and down

• Cycling: cycle at a normal pace

• Stairs : walk up/down a few steps along a staircase

• Sit down: sit in the chair carrying out normal routines

• Walking: walk in a short straight line

3.4 Improving with Traditional machine learning

Both approaches described in section 3.2 use traditional machine learning. To improve such a
model we can take a look at the architecture as shown in figure 2.5. The most effective area to
improve upon in our case is the feature extraction method, but also preprocessing and choosing a
different learning algorithm can be used.

3.4.1 Preprocessing

In literature, preprocessing is almost always used to improve the signal-to-noise ratio to gain better
results. Instead of using a box filter we apply a Gaussian filter with size 13 to reduce noise.

3.4.2 Derivatives

In state-of-the-art gait recognition and gait detection many different kind of features are used.
A recurring idea is to use feature extraction methods to capture frequency components that are
unique to gait. A feature that computes the Fast Fourier Transformation (FFT) of a signal can be
used, but this method is computationally expensive. We can improve speed by crafting our own
feature based on derivatives.
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3.5 Deep learning

In section 3.4 we mentioned crafting a new feature. An alternative to this approach is to use CNNs
to automatically learn a best feature-extraction technique. CNNs have achieved great results in
several applications of pattern recognitions such as gait recognition as proven in [1]. We can try a
similar architecture and try improving on our traditional machine learning approach.

3.6 Conclusion

We must begin by collecting more data to apply the above described approaches and evaluate
which performs best. Next we can apply changes to our server-side application. Initially some of
the state-of-the-art features such as a feature based on Fast Fourier transform (FFT) and a feature
based on Euclidian Distances (ED) are applied. We concluded that we can improve by changing
the preprocessing pipeline, crafting our own feature based on derivatives and alternatively use
CNNs to automatically learn a best feature-extraction technique. Finally we can further develop the
wearable application to allow for processing of the data and create a demo.





Chapter 4

Experiments

In this chapter we describe our experiments following the approaches described in the previous
chapter 3. The evaluation of these techniques is done on the dataset described in 3.3. We will go
over the experiments and their results to improve the gait recognition and then gait detection.

4.1 Gait recognition

The results of the initial gait recognition implementation can be seen in 4.1. We reach a TPR/FPR
of 70% and 22%, and an EER of rougly 25%. This is far from ideal, so we can try changing the
feature extraction technique. Instead of using algorithm 1, we try algorithm 2 and crafting our own
technique.

4.1.1 Derivatives

We craft our own extraction technique based on the derivative filter from computer vision. In this
derivative feature extraction method we assume a segmentation length of 10 seconds, which will
be referred to as a gait window. We use additional filtering in combination with down-sampling to
apply a low-pass filter to our data. This way we can extract different frequencies when applying our
derivative filter. Next we slide a derivative filter of [-1 0 1] across our 10 seconds of data. A final
step is to do an analysis based on the frequencies extracted by our derivative filter. With a ∑axay

we want to capture the relation of the accelerometer data in the x direction with respect to the y
direction.

After multiple experiments where we modified things such as increasing the filter length and increasing
amount of repetitions we settled on a best algorithm. A visual of this process can be seen in
figure 4.2, where each line represents a different feature extraction technique. In the figure FFT
represents the algorithm 2 and the others are modified versions of the derivative feature. The best
algorithm is described in pseudocode in algorithm 3.

4.1.2 Filter

A visual representation of using a Gaussian filter compared to a common wide box filter is shown
in figure 4.4. A Gaussian filter is preferred as it contains more of the useful data than using a box
filter. We can see the results of this in figure 4.3.
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Figure 4.1: ROC curve given for collected dataset of 5 users
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Figure 4.2: ROC curve given for collected dataset of 5 users using different feature extraction techniques
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Algorithm 3 Derivatives feature computation

1: σ← 1.6
2: downsample_rate← 2
3: function FIRST_ORDER_DERIVATIVE(signal)
4: for each signal channel data channel do
5: APPLY_CONVOLUTION1D(channel, [−1 0 +1])
6: end for
7: end function
8: function COMPUTE(signal)
9: sum(ax) . accelerometer channels(ax,ay,az)

10: sum(|ax|)
11: sum(ay)
12: sum(|ay|)
13: sum(az)
14: sum(|az|)
15: sum(multiply(ax, ay))
16: sum(multiply(ax, az))
17: sum(multiply(ay, az))
18: sum(|multiply(ax, ay)|)
19: sum(|multiply(ax, az)|)
20: sum(|multiply(ay, az)|)
21: repeat instructions above for gyroscope channels(gx,gy,gz)
22: end function
23: signal← FIRST_ORDER_DERIVATIVE(signal)
24: f ull_res_coe f ← COMPUTE(signal)
25: signal← down_sample(signal,downsample_rate)
26: signal← gaussian_ f ilter1d(signal,σ)
27: 1st_order← FIRST_ORDER_DERIVATIVE(signal)
28: hal f _res_coe f ← COMPUTE(signal)
29: signal← down_sample(signal,downsample_rate)
30: signal← gaussian_ f ilter1d(signal,σ)
31: 1st_order← FIRST_ORDER_DERIVATIVE(signal)
32: quarter_res_coe f ← COMPUTE(signal)
33: f eature← Concatenate full, half and quarter resolution . f eature contains the derivatives

filter
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Figure 4.3: ROC curve given for collected dataset of 5 users using different filters and derivative feature

Figure 4.4: Comparison of using a Moving Average (MA) filter with width 20 and a Gaussian filter with size
13. In blue is shown useful information of gait
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Figure 4.5: ROC curve given for collected dataset of 5 users using ED, FFT and derivative features

4.1.3 Result

We can compare the 3 algorithms 1, 2, 3 in one graph 4.5. We can see the combination of
a gaussian filter and both FFT and derivatives filter perform much better than the original ED
(xscores) feature using the original preprocessing.

4.2 Gait detection

The problem of gait detection is inherently easier than gait recognition. We applied the same
preprocessing technique as described in subsection 4.1.2. We already had good results using
algorithm 2 as our feature extraction technique. We experimented with slightly modified version of
the derivatives algorithm to select a best feature extraction technique (see figure 4.6). Using our
derivative feature described in algorithm 3 we gain even better results. A comparison of these two
features is given in figure 4.7. Similarly to our gait recognition problem, the derivative feature and
better preprocessing give a more accurate result.

4.3 Android implementation

To the android application on the wearable we’ve added the inference of the gait detection (walk
detection) and gait recognition (authentication) models. Figure 4.8 shows the face of the watch
after recording and processing a walk of 23 segments of 10 seconds.

The SenseID wearable (see figure 4.9) has at the time of writing not been completed. Therefore
the integration on this new hardware cannot be done. However, the SenseID wearable will also run
android and therefore the developed application should be compatible with the new hardware.
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Figure 4.6: ROC curve given for collected dataset of 5 users using FFT and derivative features

Figure 4.7: ROC curve given for collected dataset of 5 users using FFT and derivative features
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Figure 4.8: Android User Interface (UI)
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Figure 4.9: SenseID wearable research platform
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Table 4.1: Computation time of features ED, FFT and derivatives

Feature Preprocessing (ms) Computation Auth Time (ms) Total (ms)
ED 11 540 551
FFT 11 170 181
derivatives 11 13 24

4.4 Computation time

On the server-side application in Python, we calculated different features on the same data and
measured how long they took to compute. The results of which are shown in table 4.1. When
comparing the computation time of ED, FFT and the derivative feature we can conclude that
derivative feature is a much more computationally efficient method.

4.5 Conclusion

After recording our own dataset, we’ve succesfully improved upon the initial result by changing our
preprocessing pipeline and crafting a new feature extraction technique. However, a dataset of only
5 participants is unsufficient. In chapter 5 we will validate our results on public available datasets
described in section 2.9.



Chapter 5

Validation

Currently our dataset has sufficient walking data of only 5 users, which is according to state-of-the-art
publications a small dataset. This makes the classification task easier and therefore must be tested
with more participants. In 2.9 we listed some feasible datasets on which we can evaluate our
techniques. In this chapter we describe how the implemented methods from chapter 4 perform on
public datasets.

5.1 Gait recognition

To test our gait recognition methods we validate on the IDNet [1] dataset. The resulting ROC
graph is shown in figure 5.1. We can conclude that when we increase the pool of users to a more
representative size, the accuracy of our method does not suffer.

5.2 Gait detection

To validate our gait detection methods we use the PAMAP2 [3] dataset and the USC-HAD [2]
dataset.

We selected walk data as positive samples and other activities as negative samples. To properly
make the trained model generalize we chose to use a cross validation method. Here we choose the
data of n amount of subjects for training and the rest for testing. Next, we measure the accuracy
and choose a different set of subjects for training. We then measure the accuracy, and so forth.

5.3 Conclusion

We can conclude that the methods in chapter 4 do work on suitable public datasets.
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Figure 5.1: ROC curve Authentication IDNet dataset using FFT and derivatives features

Figure 5.2: ROC curve Gait detection USC-HAD dataset using FFT and derivatives features
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Figure 5.3: ROC curve Gait detection PAMAP2 dataset using FFT and derivatives features





Chapter 6

Discussion and Future Work

The goal of this thesis project was to take a look at existing unobtrusive gait recognition methods
and attempt to improve the state-of-the-art algorithms to provide a more computationally efficient
and accurate method for computationally limited devices.

We developed a continuous gait-based authentication system by combining two traditional machine
learning models to do gait detection and gait recognition. We implemented new preprocessing and
a feature extraction technique to improve accuracy and computational speed. The implemented
techniques show good results on a new recorded dataset and on public available datasets.

6.1 Future Work

We managed to craft a good feature extraction technique which shows good results, so there is little
improvement to be made in terms of accuracy and computational speed. More work can be done
to reduce memory and cpu usage as little to no work has been done to optimize the resources on
both the wearable application and the server-side application. Furthermore, the training of models
has to be done offline, so more work can be done to transfer data from the wearable to the server
to enroll new users more easily. Once the development of the SenseID wearable is completed, we
will be able to collect walking data for a lot more users over a long duration and test our current
results in a realistic environment.
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